Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomic Med ; 12(1): e2320, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37947113

RESUMO

BACKGROUND: Patients with biallelic variants in the lanosterol synthase (LSS) gene has been reported to exhibit phenotypes as follows: non-syndromic form of hypotrichosis, congenital cataracts, and alopecia with intellectual disability or growth retardation. However, genotype-phenotype correlations in the LSS gene are still not completely clear. METHODS: In this study, we reported a Chinese girl who had congenital cataracts with hypotrichosis. The trio exome sequencing was performed to elucidate the genetic cause of the patient. RESULTS: We identified compound heterozygous variants (c.296G>A, p.G99D and c.1025T>G, p.I342S) in the LSS gene. Both variants altered the amino acid coding at highly conserved amino acid residues and were predicted to be deleterious using prediction software. CONCLUSION: Our report expands the spectrum of variants in the LSS gene and will be helpful for genotype-phenotype correlations study.


Assuntos
Catarata , Hipotricose , Transferases Intramoleculares , Feminino , Humanos , Hipotricose/genética , Alopecia/genética , Catarata/genética , Aminoácidos
2.
Clin Chim Acta ; 552: 117671, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984529

RESUMO

BACKGROUND: The 16p11.2 deletion is one of the most common genetic aetiologies of neurodevelopmental disorders (NDDs). The prenatal phenotype of 16p11.2 deletion and the potential mechanism associated with postnatal clinical manifestations were largely unknow. We revealed the developmental trajectories of 16p11.2 deletion from the prenatal to postnatal periods and to identify key signaling pathways and candidate genes contributing to neurodevelopmental abnormalities. METHODS: In this 5-y retrospective cohort study, women with singleton pregnancies who underwent amniocentesis for chromosomal abnormalities were included. Test of copy-number variations (CNVs) involved single nucleotide polymorphism-array and CNV-seq was performed to detected 16p11.2 deletion. For infants born carrying the 16p11.2 deletion, neurological and intellectual evaluations using the Chinese version of the Gesell Development Scale. For patients observed to have vertebral malformations, Sanger sequencing for T-C-A haplotype of TBX6 was performed. For those infants with clinical manifestations, whole-exome sequencing was consecutively performed in trios to rule out single-gene diseases, and transcriptomics combined with untargeted metabolomics were performed. RESULTS: The prevalence of 16p11.2 deletion was 0.063% (55/86,035) in the prenatal period. Up to 80% (20/25) of the 16p11.2 deletions were proven de novo by parental confirmation. Approximately half of 16p11.2 deletions (28/55) were detected with prenatal abnormal ultrasound findings. Vertebral malformations were identified as the most distinctive structural malformations and were enriched in fetuses with 16p11.2 deletions compared with controls (90.9‰ [5/55] vs. 8.4‰ [72/85,980]; P < 0.001). All 5 fetuses with vertebral malformations were confirmed to have the TBX6 haplotype of T-C-A. Overall, 47.6% (10/21) infants birthed were diagnosed with NDDs of different degrees. Language impairment was the predominant manifestation (7/10; 70.0%), followed by motor delay (5/10; 50%). Multi-omics analysis indicated that MAPK3 was the central hub of the differentially expressed gene (DEG) network. We firstly reported that histidine-associated metabolism may be the core metabolic pathway related to the 16p11.2 deletion. CONCLUSION: We demonstrated the prenatal presentation, incomplete penetrance and variable expressivity of the 16p11.2 deletion. We identified vertebral malformations were the most distinctive prenatal phenotypes, and language impairment was the predominant postnatal manifestation. Most of the 16p11.2 deletion was de novo. Meanwhile, we suggested that MAPK3 and histidine-associated metabolism may contribute to neurodevelopmental abnormalities of 16p11.2 deletion.


Assuntos
Deficiência Intelectual , Transtornos do Desenvolvimento da Linguagem , Transtornos do Neurodesenvolvimento , Lactente , Gravidez , Humanos , Feminino , Deleção Cromossômica , Estudos Retrospectivos , Histidina , Multiômica , Prevalência , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Desenvolvimento da Linguagem/genética , Variações do Número de Cópias de DNA/genética , Cromossomos Humanos Par 16/genética , Proteínas com Domínio T/genética
3.
Front Neurosci ; 17: 1174925, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274198

RESUMO

Background: Intellectual developmental disorder 7 (also named DYRK1A syndrome) is an autosomal dominant disease. The main clinical features of DYRK1A syndrome include intellectual disability, microcephaly, and developmental delay. This study aimed to identify pathogenic variants in a Chinese girl with developmental delay, impaired social interaction, and autistic behavior. Case presentation: The case was a 6-year-old girl. Clinical symptoms of the patient mainly included developmental delay, seizures, autistic behavior and impaired social interaction. The patient presented with microcephaly, bushy eyebrows, a short lingual frenum, binocular esotropia, bilateral valgus and external rotation, and walked with an abnormal gait. Using whole-exome sequencing, we identified a 9,424 bp de novo heterozygous deletion (containing coding exons 10, 11, and 12, and partial sequences of non-coding exon 12) in DYRK1A, which is responsible for DYRK1A syndrome. The DYRK1A variant is classified as pathogenic according to the criteria of the American College of Medical Genetics and Genomics. Conclusions: The findings of this study augment the data regarding the pathogenic variants of DYRK1A and provide important information for molecular diagnosis.

4.
BMC Pediatr ; 22(1): 82, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130870

RESUMO

BACKGROUND: Oculo-facio-cardio-dental syndrome is a rare X-linked dominant syndrome, characterized by radiculomegaly, congenital cataracts, dysmorphic facial features, and congenital heart disease. Because of the rarity, this syndrome could be misdiagnosed by the clinician, especially for the infant who may present only one to two systems involved. CASE PRESENTATION: Here we report a 3-month-old female infant presenting with typical clinical manifestations of oculo-facio-cardio-dental syndrome, like ocular, facial, cardiac, and skeletal abnormalities, and the genetic analyses of the proband and her parents were provided. Genetic evaluations were completed using whole exon sequencing, which revealed a novel heterozygous mutation between exons 7 and 14 of the BCOR gene(OMIM:300485) in this patient but not in her parents. This mutation is likely to encode a premature stop codon producing a truncated protein. Our patient was diagnosed early enough to allow for the cardiac defects to be treated first, and she will be closely followed up to ensure that any new presentations are treated in a timeous manner. CONCLUSION: This patient fits the diagnostic criteria for oculo-facio-cardio-dental syndrome and is the youngest oculo-facio-cardio-dental syndrome patient ever reported, which is most important for her prognosis. In addition, this manuscript also describes a novel potenitally causative mutation for this syndrome.


Assuntos
Anormalidades Múltiplas , Catarata , Cardiopatias Congênitas , Microftalmia , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Catarata/congênito , Catarata/diagnóstico , Catarata/genética , Feminino , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Defeitos dos Septos Cardíacos , Humanos , Lactente , Microftalmia/diagnóstico , Microftalmia/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Deleção de Sequência , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...